EDUCATION Princeton University

1 14 5

BSE Candidate, Mechanical and Aerospace Engineering

Certificate in Robotics & Intelligent Systems Departmental GPA: 3.8; Cumulative GPA: 3.5

EXPERIENCE

Intern - National Aeronautics and Space Administration (NASA)

Summer 2016

expected June 2018

- Designed Retention & Release Alignment & Assembly Device (RRAAD) 6 degree-of-freedom tool to orient & assemble Retention & Release Mechanism in Orion Crew Module (CM) for Ascent Abort 2 (AA2) Flight Test
- Design approved by AA2 Project Team & head of Mechanical Systems Branch
- Devised laser tracking method to determine orientation of RRAAD in CM
- Wrote Excel Coordinate Transformation Program to convert Orion : global coordinates
- Programs used: PTC Creo, Nastran, Patran, Microsoft Excel

Princeton Undergraduate Research Intern

June 2015- February 2016

- Designed and performed experiments to examine the degradation of perovskite (CH3NH2PbI3) solar cells under Sarah Jane White of the Harvard School of Public Health
- Bruker D8 X-Ray Diffraction measurements & Athena analysis of XANES/NEXAFS data
- Designed isolation chamber to seal out or introduce ambient air, water, or light to sample

Intern - American Museum of Natural History/ Columbia University

Summer 2014

• Researched/documented hundreds of minerals for Columbia University

Research Intern - Pascack Historical Society Museum

Summer 2011 - 2015

• Researched/documented chemicals of Civil War medical kit & local artifacts

PROJECTS

Space Debris Removal CubeSat - Independent Project

Academic Year 2016 - 2017

- Designing & fabricating CubeSat to clear space debris in Low Earth Orbit via balloon device
- Working in Princeton's Electric Propulsion & Plasma Dynamics Lab under Dr. Edgar Choueiri, Director of Princeton's Engineering Physics Program

NASA Revolutionary Aerospace Systems Concepts-Academic Linkage Competition 2017

• Project lead of Princeton Competitive Engineering prototyping ice-drill for use on Mars

Wind Turbine Spring 2016

- Designed and analyzed 6" diameter, 10-blade wind turbine in Q-Blade
- Modeled turbine in Creo Parametric 5.0 and 3D printed using Cura
- Varied NACA airfoils, turbine diameter, blade thickness, twist, & chord length to approach Betz limit
- Tested power generation in wind tunnel between 0 30 m/s

 ${\it Technical Team - Engineers without Borders}$

2015 - present

• Designed water pipeline, springbox, & reservoir tank in PTC Creo

Brown University Environmental Leadership Laboratory

Summer 2013

- \bullet Designed and constructed solar ovens & solar showers for developing nations
- Pitched plan to Brown University engineers and environmental scientists

ACTIVITIES

Women's Rugby, Princeton Competitive Engineering, Students for the Exploration & Development of Space, 3D Printing Club, Sustainable Energy & Development Scholars, Outdoor

Action Excursion Leader, Religious Life Council, Aquinas Catholic Institute

SKILLS

X-Ray Diffraction: Bruker D8 Discover XRD, Powder XRD, Athena Data Processing

Lab Experience: Clean Room, Quality Assurance Laser Tracking, IR/NMR/UV Spectroscopy,

Mass Spectrometry, ICPMS

Programming: Java, Python, MATLAB, Microscoft Excel, Nastran, Patran, LaTeX

Modeling: PTC Creo, 3D Printing

Additional: Advanced Spanish language proficiency

AWARDS

Princeton University Outstanding Work by Freshman Award, Bausch+Lomb Honorary Science Award, National Merit Finalist & Scholarship Recipient